
Name:

ID#:

Enrolled Discussion (circle one): M–10am M–11am M–7pm F–10am F–11am F–12pm

MAE10

Midterm Examination II

Winter Quarter 2010

Instructions: You have 90 minutes to complete the exam. Notes on two sides of an

8.5’’x11’’ sheet of paper are allowed. Closed book. No calculators or electronic devices

of any kind.

Section 1: Short answer. (2 points each)

(1.1) If your function is called mycoolfunction, what must be the name of the m-file that contains it?

(1.2) Why was the UNIVAC computer important?

(1.3) How many arguments can you pass down to a function?

(1.4) Within a particular program, how many times can you call a function?

(1.5) What is the difference between the %f, %g, and %e formatting commands?

Section 2: Identify and briefly explain any and all errors that would prevent the code

from executing in the following MATLAB programs. Warnings and “bad programming”

are not considered errors – those would not prevent the code from running. If you believe

there are no errors, write “OKAY”. (3 points each)

(2.1) x = [2, 2, 4, 5];

 y = [33, 98]

 z = [11, 11, 11];

 if(x(3) > y(1) | z(3) ~= z(3))

 y(1) = z(3);

 elseif(x(4) < y(3) & x(4) == z(2))

 z(1) = x(3);

 elseif(z(1) == y(1) | x(3) == y(1))

 fprintf('%7.2f\n', z)

 end

(2.2) x = -1;

 y = 5;

 for i=1:1:x

 y = y+1;

 disp(x+y)

 end

(2.3) z = 100;

 while(z < 10)

 z = z – 1;

 if(z == z | z > z)

 z = z;

 end

 end

(2.4) sport = 'baseball' ;

 switch sport

 case { football, sport }

 disp(sport)

 otherwise

 disp('hello')

 end

(2.5) x = 4;

 y = 5;

 fprintf('The value of %7.2f is %7.2f', x, x)

 fprintf('y is %10.2e', x)

(2.6) x = [3.2 , 6.1 , 4 , pi];

 fprintf('%g \n %e', x(1:2) , x(4))

 fprintf('%i %10.1g %f', x)

For problems (2.7) through (2.10), I provide a function and the “main” program that calls

the function, each stored in a different M-File. Assume both M-Files are in the same

directory. Errors may exist in either or both programs.

(2.7)

In the “main” program:
 x = 5;

 y = 4;

 fprintf('%7.2f', zot(x,y), zot(y,x))

In the m-file containing the function zot:
 function [result] = zot(a,b)

 a = 100;

 result = a + b;

 return

 end

(2.8)

In the “main” program:
 x = [1, 3, 5, 7]

 h = [100, 200]

 y = apple(x) / apple(h)

In the m-file containing the function apple:
 function [result] = apple(core)

 result = 2;

 for i=1:numel(core)

 result = result + core(i) + 1;

 end

 end

(2.9)

In the “main” program:
 x = [3, 4, 5, 5];

 y = [6, 7];

 [a, b] = cheese(x, y);

In the m-file containing the function cheese:

 function [results] = cheese(y, x)

 results = 0;

 return

 for i=1:numel(y)

 results = x(i) + y(i);

 end

 end

(2.10)

In the “main” program:
 x = [3, 4, 5, 6 ; 7, 8, 9, 10];

 h = pig(x(3,:)) * pig(x(:,3))

In the m-file containing the function pig:

 function [x] = pig(y)

 x = -10;

 x = x + mean(y);

 results = 10;

 end

Section 3: Write the exact output that will be produced by each of the following

programs. Assume that there are no errors. Clearly distinguish answers from any scratch

work and indicate which line of code each answer corresponds to. If you are given

specific formatting instructions, you must use underscores to indicate any and all

blank spaces (one underscore per blank space). In addition, carriage returns (newline)

should be clear. (4 points each)

(3.1) a = (-1 : +2 : +5);

 b = (+5 : -2 : -1);

 for i=1:3

 summy(i) = a(i) + b(i+1);

 end

 fprintf('%3i', summy)

 (3.2) c = [1, 5, 7, 8, -10];

 d = [9, 5, 7];

 i = 1;

 while(i < d(2))

 m(i) = i + c(i);

 i = i + 1;

 end

 fprintf('%3i %5i\n', m)

(3.3) x = (1.25: 3.25);

 y = x + 2;

 table1 = [x , y];

 table2 = [x ; y];

 fprintf('%7.2f %5.2f\n' , table1)

 fprintf('%7.2f %5.2f\n' , table2)

(3.4) a = [1, 8, -1, -9];

 b = [-5, 8, 1, -6, 7, 9];

 for i=1:numel(a)

 c(i) = 0;

 for k = i : numel(a)

 c(i) = c(i) + a(k) + b(k);

 end

 end

 fprintf('%7.2f\n', c)

For problems (3.5) through (3.7), I provide a function program and the “main”

program that calls the function. Assume both programs are in the same directory.

(3.5)
In the “main” program:
 a = 2.5;

 b = 9.5;

 y = 5.5;

 z = 6.5;

 [a , b] = funky(a, b);

 fprintf('a is %7.3f\n', a)

 fprintf('b is %7.1f\n', b)

In the m-file containing the function funky:
 function [y , z] = funky(b, a)

 z = b + a;

 a = b;

 b = a;

 y = a + b;

 fprintf('a is %6.3f\n', a)

 fprintf('b is %6.1f\n', b)

 end

(3.6)
In the “main” program:
 even = [1, 3, 5, 7];

 odd = [2, 4, 6, 8];

 [a , b] = chunky(even(1:3) , odd(1:2));

 fprintf('%3i\n', a)

 fprintf('%4i\n', b)

In the m-file containing the function chunky:

 function [x , y] = chunky (ev, od)

 for i=1:numel(od)

 x(i) = od(i) + ev(i);

 y(i) = od(i) – ev(i);

 end

 end

(3.7)
In the “main” program:
 a = 4.5;

 b = 5.5;

 c = [1.1, 2.2];

 x = f1(a, b) + f2(b);

 y = f1(c(1), b) – f2(c(2)) ;

 fprintf('x = %7.2f\n', x)

In the m-file containing the function f1:
 function [output] = f1 (x, y)

 output = x – f2(y);

 end

In the m-file containing the function f2:
 function [output] = f2 (x)

 fprintf('x = %7.2f\n', x)

 output = x + 2;

 end

Section 4: Write a MATLAB program to solve each of the following problems. You do

not have to write the output of the code.

(4.1) Create a program that calculates the value of the expressions x and y,

x = t + t
2

y = t
3
 + 3

from t = 0 seconds to 1 second in increments of 0.1 seconds. Display the values of t, x, and y in a three-

column table with special formatting. The variable t (in the first column) should be displayed using six

total spaces, two of which are for digits to the right of the decimal point. The variable x (in the second

column) should be displayed using seven total spaces, three of which are for digits to the right of the

decimal point. The variable y (in the third column) should be displayed using six total spaces, three of

which are for digits to the right of the decimal point. (4 points)

The first three lines of the table would look like the following:

 0.00 0.000 3.000

 0.10 0.110 3.001

 0.20 0.240 3.008

(4.2) A program calls a function called analyzeT:

[maxT , minT , avgT] = analyzeT(temp);

Write the function analyzeT that takes as input an array of temperatures called temp. The function

returns as output the maximum temperature (maxT), the minimum temperature (minT), and the average

temperature (avgT). For example, if temp contains [90,91,95,92], maxT would be 95, minT

would be 90, and avgT would be 92.

You cannot use MATLAB’s built-in functions max(), min(), sum(), or mean(). (5 points)

(4.3) A program calls a function called switcharoo:

d = switcharoo(c)

Write the function called switcharoo that takes as input an array c and returns as output an array d whose

elements are in reverse order of the input array. For example, if array c contains [1,3,7,7] the array

d would contain [7,7,3,1].

You cannot use any of MATLAB’s built-in functions for this problem except functions that determine

the number of elements in an array. (5 points)

(4.4) A program in a vending machine uses a function called change:

[quarter, dime, nickel, penny] = change(money)

Write the function called change that takes as input an amount of cents (stored in the variable money)

and calculates the number of quarters, dimes, nickels, and pennies to dispense to the user. These

quantities are returned as output and stored in the variables quarter, dime, nickel, and

penny. The total number of coins dispensed to the customer should be minimized (you cannot make the

vending machine only dispense only pennies, unless money is between 1 and 4 cents). For example, if

money is 132 cents, then quarter would be 5, dime would be 0, nickel would be 1, and penny

would be 2. (6 points)

