
1

Contents
VARIABLES ... 1

Storing Numerical Data ... 2

Limits on Numerical Data ... 6

Storing Character Strings ... 8

Logical Variables .. 9

MATLAB’S BUILT-IN VARIABLES AND FUNCTIONS .. 9

GETTING HELP IN MATLAB .. 13

CREATING M-FILES .. 13

COMMENTS IN MATLAB ... 14

VARIABLES

Variables are used to store data (numbers, letters, etc) in MATLAB. There are a few rules that must be
followed when creating variables in MATLAB:

 Variable names must begin with a letter and can be followed with any combination of letters,

numbers, or underscores only – no special characters are allowed in variable names.

 Variable names must not exceed 63 characters in length.

 Variable names are case sensitive. This means that the variable j is not the same as the

variable J and the variable Apple is not the same as the variable apple.

Examples of acceptable variables: a, b, c, apple, Apple, ApPLE89_3, ILIKECHEESE

Examples of unacceptable variables: 89, 8fish, Fis h, pizza!

You should choose variable names that are descriptive and provide some indication of the value they
are storing. For example, use the variable numapple to store information about the number of
apples, or something like Velocity_x or V_x to store information about velocity in the x-direction.

You can check if a variable name is allowed with the isvarname command. This is just one of many
built-in commands in MATLAB. Note that 1 = Yes and 0 = No in this case. (The number 1 actually
corresponds to “true” in certain situations in MATLAB, and 0 corresponds to “false”. This will be

covered in detail later in the course when discussing logical operators and if statements.)

>> isvarname pizza

ans =

 1

2

>> isvarname pizza!

ans =

 0

In MATLAB, unlike other languages such as FORTRAN, we do not need to declare the data type of
variables (integer, real, character, etc). All variables in MATLAB are assumed to store floating point
data (e.g. real, decimal numbers) unless otherwise stated (there will be times where we will want to
store letters instead of numbers, or force a variable to be an integer). In fact, you do not even need to
declare variables before assigning them a value for the first time. They are automatically declared and
created when you assign them a value. In MATLAB, the equals sign (=) means “assign the value on the
right to the variable on the left” not “equals” – this is a very important concept to understand in
programming and allows us to perform unique operations (such as recursive relationships, discussed
later).

Storing Numerical Data

>> b = 2

b =

 2

The value on the right side of the equals sign is assigned to the variable b. Think of b as a box (in your
computer’s memory) that can hold values (numbers, characters, etc). Once you have defined b, it is
now stored in memory (see the Workspace on the right hand side of your MATLAB environment). You
can now use the stored value of b to perform calculations.

>> b + 5

ans =

 7

>> b * 5

ans =

 10

3

Once it is stored in memory, you can use the value of b to calculate the value of another variable, c.

>> c = b + 5

c =

 7

Here, 2 + 5 is evaluated (the right hand side is evaluated first), and the resulting value is assigned to
c (the variable on the left hand side of the equals sign).

You can use the value of multiple variables to get the value of another variable, cow.

>> cow = b * c

cow =

 14

In this example, 2 * 7 is evaluated, and the answer is assigned to cow. I emphasize that the right side
of the equals sign is evaluated first, then the result is assigned to the variable on the left side. This
allows us to use what is called a recursive relationship.

>> cow = cow + 1

cow =

 15

This equation may appear wrong algebraically, but computationally it is fine. The right side (14+1) is
evaluated first (14+1 is 15), then assigned to cow. Note that if you re-use a variable name and assign
it a new value using the equals sign, you have replaced the old value the variable had previously. Thus,

the variable cow stores the value 15 after the above operation has been executed.

You can check out what variables have been created with the who command (and also by looking in
the Workspace). This built-in MATLAB command lists all the variables currently stored in memory
(which can be used or accessed for additional calculations).

>> who

Your variables are:

ans b c cow

4

Note that ans is a reserved variable in MATLAB – it is assigned a value if you perform a calculation but
do not define a variable on the left hand side of the equals sign. You can get more detailed information
about the variables with the whos command. This shows the variables in your workspace, what type
(class) they are, how much memory they are taking, their size, and other attributes.

>> whos

 Name Size Bytes Class Attributes

 ans 1x1 8 double

 b 1x1 8 double

 c 1x1 8 double

 cow 1x1 8 double

There is a lot of information here. We will learn more about the additional details as the course goes
on. The concept of variable scope will become important when we learn about functions. For now, just
notice how all the variables are considered 1x1 arrays that are storing double precision data (that is, all
variables contain floating-point numbers).

You can suppress output to the command window by ending any expression with a semi-colon “;”.
Note that this just prevents the result from being displayed into the command window – the
calculation is still performed and the result is still stored in memory.

>> d = 2 * c

d =

 14

>> e = 2 * c;

Note that the variable e is still stored in memory. We can access it and check its value by just typing its
variable name in the command line.

>> e

e =

 14

What if you try to use a variable that has not been defined yet?

>> y * 2

Undefined function or variable 'y'.

5

MATLAB cannot perform the calculation because the variable y does not yet exist. Therefore, MATLAB
stops and gives an error message (and sound if enabled). We can assign y a value and perform the
same calculation without an error.

>> y = 9

y =

 9

>> y * 2

ans =

 18

In MATLAB variable names are case sensitive. This means that an uppercase letter is distinct from a
lowercase letter.

>> t = 0.5

t =

 0.5000

>> z = 2 * T

Undefined function or variable 'T'.

Did you mean:

>> z = 2 * t

z =

 1

Note that using T returned an error since the variable t is different from the variable T. MATLAB even
suggested a correction for the error, thinking you may have inadvertently made a typo.

Variables will exist in memory until you exit MATLAB or erase them with the clear command.

>> who

Your variables are:

ans b c cow d e t y z

6

>> whos

 Name Size Bytes Class Attributes

 ans 1x1 8 double

 b 1x1 8 double

 c 1x1 8 double

 cow 1x1 8 double

 d 1x1 8 double

 e 1x1 8 double

 t 1x1 8 double

 y 1x1 8 double

 z 1x1 8 double

>> clear

>> who

>> whos

Nothing appears since all the variables are gone after the clear command – the workspace is now
empty. There is no way to recover variables that have been cleared from memory.

If your screen gets too messy or cluttered with output, you can use the clc command to clear the
screen (command window). Note that this does not clear (erase) variables from memory.

Limits on Numerical Data

There is a limit to the size of the numbers you can store in memory in MATLAB. There are built-in
commands to output these limits:

>> intmax

ans =

 2147483647

>> intmin

ans =

 -2147483648

>> realmax

ans =

 1.7977e+308

7

>> realmin

ans =

 2.2251e-308

>> eps

ans =

 2.2204e-16

Largest double-precision floating-point number: 1.7977e+308

Smallest double-precision floating-point number: 2.2251e-308
Largest integer: 2147483647
Smallest integer: -2147483648
Smallest step size between double-precision floating-point numbers: 2.2204e-16

Sometimes you run into problems when you do mathematical operations with very large and very
small numbers. For example:

>> x = 1e200

x =

 1.0000e+200

>> y = 1e-200

y =

 1.0000e-200

>> z = x / y

z =

 Inf (The true answer is 1.0000e+400)

>> a = y / x

a =

 0 (The true answer is 1.0000e-400)

8

>> b = (y / x) * x (The true answer is 1.0000e-200)

b =

 0

These numbers go beyond the limits of what MATLAB can handle as defined previously.

Storing Character Strings

Besides storing numbers (e.g., integers and decimals), you can store character data in variables too. In
both cases, you still use the equals sign to assign the value on the right hand side of the equals sign to
the variable on the left hand side of the equals sign. Character data can be letters, special characters,
and even numbers. In MATLAB you enclose any text that you want to store as a character variable in
single quotes. You must put single quotes around the text so that MATLAB recognizes it as a character
string. This is very important – if you do not put quotes around a character string, MATLAB will search
for a variable with that name, rather than recognizing it as a string of characters (e.g. a word, name,
etc.) that you want to assign to a variable.

Let’s look at some examples of how we can assign character strings to variables.

>> e = 'banana'

e =

banana (The variable e stores the word “banana”)

>> f = 'chimp'

f =

chimp (The variable f stores the word “chimp”)

>> g = chimp

Undefined function or variable 'chimp'. (There is no variable called chimp)

Notice in the third example above, we did not enclose the word chimp in single quotes. Therefore,
MATLAB did not recognize it as a character string. Instead, MATLAB attempted to search for a variable
named chimp, which did not exist. Therefore, an error message was produced.

9

>> whos

 Name Size Bytes Class Attributes

 e 1x6 12 char

 f 1x5 10 char

Notice that e and f are character variables, a different class of variable than those storing numerical

data. The variable arrays are also now bigger than 1x1. Each letter is stored in a separate space in
memory and takes one element of the array – since banana has six letters, e is a 1x6 character array.
We will discuss this in more detail in the future.

Logical Variables

We will learn about this type of variable later in the context of relational and logical operators and if
statements. For now, just be aware that it exists and is different from floating point numbers and
character arrays.

MATLAB’S BUILT-IN VARIABLES AND FUNCTIONS

MATLAB contains a large library of commonly used variables and functions. For example, the variable
name pi is reserved for π (3.141592654…). Note that it is possible for you to over-write a built-in
variable and replace it with a value that you assign, but this is not a good idea. Using clear to clear
memory will revert these variable back to their default, built-in values. We can access or use these
built-in variables without having to define them or assign values to them.

>> pi

ans =

 3.1416 (many more digits are stored, but only four digits right of the decimal are shown)

>> z = 3 * pi

z =

 9.4248

>> degrees = 90

degrees =

 90

10

>> radians = degrees * (pi / 180)

radians =

 1.5708

There are many different types of functions in MATLAB. Almost all functions are given one or more
arguments (the input sent into the function to evaluate the output). For example, the trigonometric
function sin(x) has one argument, x, which must store numerical data. The arguments of
trigonometric functions in MATLAB are assumed to be in radians – be sure to convert from degrees to

radians before using sin(), cos(), etc.

>> sin(0)

ans =

 0

>> cos(0)

ans =

 1

>> sin(pi)

ans =

 1.2246e-16

>> cos(pi)

ans =

 -1

Note that in this example, sin(pi) does not exactly equal to zero. This brings up a very important
limitation of computers – they cannot store an infinite amount of information. That is, pi is an
irrational number and has an infinite number of digits after the decimal. Since only a finite amount of
digits are stored in MATLAB, the sine of pi’s value that is stored in MATLAB is not exactly zero. Please
see the notes about numerical (rounding) errors for additional information.

11

Some other commonly used built-in MATLAB functions:
sqrt(x) calculates √x
exp(x) calculates ex

abs(x) calculates |x|

See MATLAB’s help documentation or the textbook for a longer list of built-in functions.

MATLAB has many functions that allow you to do common tasks with a single command. Other
languages, such as FORTRAN and C, may not have these built-in functions and are less user friendly in
some respects. (However, the price you pay for this user-friendly behavior in MATLAB is that it typically
executes calculations slower than equivalent FORTRAN or C codes.) For example, in MATLAB,
mean(x) finds the average value of one or more numbers stored in x. However, in this class, we will
not be using many of these functions because it is important that you understand the thinking and
calculations behind the functions and not just how to plug in numbers.

It is possible to use built-in function or built-in variable names as names for your variables. This is a bad
idea because it may confuse the user, and it essentially “breaks” the function until you clear that
variable from memory.

>> pi

ans =

 3.1416

>> 3*pi

ans =

 9.4248

>> pi = 7

pi =

 7

>> 3 * pi

ans =

 21

12

>> sin(4)

ans =

 -0.7568

>> sin = 2

sin =

 2

>> sin(4)

Index exceeds matrix dimensions.

In these examples, we overwrote the variable pi with a value of 7, and assigned a numerical value to
the variable name sin, which prevented the sin() function from working in the next command.
Once again you should never use built-in variable or function names to name your variables.

There are also certain keywords that are not allowed to be used for variable names. Use the command

iskeyword to see the keywords reserved in MATLAB.

>> iskeyword

ans =

 'break'

 'case'

 'catch'

 'classdef'

 'continue'

 'else'

 'elseif'

 'end'

 'for'

 'function'

 'global'

 'if'

 'otherwise'

 'parfor'

 'persistent'

 'return'

 'spmd'

 'switch'

 'try'

 'while'

13

MATLAB will not allow you to create a variable with any of the above names.

GETTING HELP IN MATLAB

MATLAB has a lot of documentation built-in that can help you if you need more information. For
example, if you need help with the sin() function, you can use the help command in the command
window.

>> help sin

 sin Sine of argument in radians.

 sin(X) is the sine of the elements of X.

 See also asin, sind.

 Reference page for sin

 Other functions named sin

There is a lot of information in the search documentation area in the upper right hand corner and on
the official MathWorks website. There are countless tutorials online (videos, walkthroughs, etc.) as
well. Google is also commonly used when searching for additional MATLAB help on specific commands
or when looking for examples from other sources.

CREATING M-FILES

So far we have only been executing simple commands at the command line inside the command
window. What if you want to make a small change to a code that has a lot of commands without
having to type those commands over again every time you want to execute your code?

You can create an “M-File” – a simple ASCII text file that ends with a .m extension. You can create or
edit M-Files using external text editors like Notepad++ and Emacs, or within MATLAB’s built-in text
editor in the Editor window. You can create or open a text file at the command line using the edit
command. (For this class, please use the MATLAB’s built-in editor for creating and modifying your M-
Files. Your files MUST have a .m extension when submitting your homework.)

>> edit myfile.m

You will be prompted to create the file if it does not exist, and you should see the Editor window open
above the command window inside of MATLAB. Commands are executed sequentially from line 1, line
2, line 3, etc., in the same exact way as if you typed them in the command window. For example, a
basic M-File file might look like this:

14

In myfile.m:
clear;

x = 5;

y = 7

c = x*y

Be sure to save your M-File after making any changes (which you created with the name myfile, with
the .m extension). To run your M-File, type the filename without the .m extension at the command
line, or click the Run button above the Editor window (the green arrow).

Sample Output:
>> myfile (notice we don’t include the .m extension here although the file has it)

(x = 5 is suppressed due to the use of a semi-colon)
y =

 7

c =

 35

You may open and edit your M-File later if needed by either using the edit command again or simply
double clicking the file from the Current Folder window or your computers file browser. You can have
multiple M-Files open at once in the Editor and they will each have their own tab (similar to a web
browser).

It is a good idea to use the clear command at the beginning of your M-File. This will remove all
variables from memory and prevent unwanted interactions and/or odd behavior due to variables left
in memory from other codes executed previously.

COMMENTS IN MATLAB

The percent symbol (%) is used to create commentary in MATLAB. Comments are completely ignored
by MATLAB, and can contain any characters you like (letters, words, numbers, symbols, etc.).

There are two main reasons you should heavily comment your codes:

1. Another programmer may need to use/edit your code and will need to understand what is
going on. Comments allow you to leave notes to yourself and/or other users.

2. When your code becomes long or you work on it over a long period of time, it becomes
increasingly difficult to remember exactly what you were thinking when you wrote a certain
line. However, you still need to remember exactly what each line of code is doing, what data a

15

given variable is storing, what units are being used, etc. Anything after the % will be ignored by
MATLAB.

It is very important that you develop the habit of adding descriptive comments into your code early on.
Let’s look at the same sample code as before but with some comments added:

In myfile.m:
%My Code - Practicing MATLAB (nothing will happen from this line)
clear; % clear old variables from memory

x = 5; % x-position in [m]

y = 7 % y-position in [m]

c = x * y

Sample output:
>> myfile

y =

 7

c =

 35

Here, the variable x is assigned a value but it is not printed due to the semicolon suppressing output to
the command window. The text %My Code - Practicing MATLAB is ignored by the program,

as are all the other comments preceded by the % sign. Note that the output is the same as before we
added the comments – the comments are only there to help the programmer.

It is always a good idea to add lots of comments to you code to document the variables you used (e.g.,
units for numbers) and the logic behind the operations. For the purposes of this class, comments can
also be used as a header and should include your name and ID#, the homework and problem number,
a brief problem statement, etc.

Comments can also be used when testing your code or trying to find which line of code is causing an
error (“debugging”). For example, if you want to disable a certain line of code, simply add a % sign as
the first character in that line. This will turn the line into a comment, which will be ignored by MATLAB.
When used to debug your code (find errors), comments can be used in the following way. Starting at
the bottom (last line) of your code, you can start commenting out lines one or two at a time. After you
comment out a line or two, try and run the code again. If it runs without error, one of the lines you just
commented out was the source of the error. You can then examine that line in detail to find the source
of the error. (When an error occurs, MATLAB attempts to pinpoint the exact line number that causes
the error. However, it is not always accurate and the error may originate from an earlier line of code.)

