
1

Contents
RELATIONAL AND LOGICAL OPERATORS .. 1

Relational Operators.. 1

Logical Operators ... 1

Using Relational and Logical Operators with Scalars .. 2

Using Relational Operators with Numerical Arrays ... 5

Using Relational Operators with Character Arrays ... 6

RELATIONAL AND LOGICAL OPERATORS

Relational Operators

Often we want to compare values of different variables in order to determine what to do next. As you
might have guessed from the name, relational operators are used to determine the relationship
between different variables. There are many relational operators that allow us to compare values. You
should be familiar with many of these from mathematics, however, pay careful attention to how they
are represented and used in MATLAB.

> greater than
< less than

== equal to (Notice the double equal sign. One equal sign is the assignment operator.)
>= greater than or equal to
<= less than or equal to
~= not equal to

When using a relational operator to compare alphanumeric data (letters and numbers), the result will
be a logical variable. Logical variables are a different type of variable and only have two possible

values: 1 (true) or 0 (false). To compare logical data, we must use logical operators, which are
discussed in the next section.

Logical Operators

The relational operators above allow us to compare alphanumeric data (e.g., letters and numbers).
However, if we want to compare logical data (e.g., true or false, represented by 1 or 0 in MATLAB), we
need to use logical operators. The syntax for using logical operators in MATLAB is the following:

& and (both statements must be true)

| or (either or both statements can be true)
~ not (the opposite of the statement)

xor() exclusive or (only one statement can be true)

2

In most cases, logical operators are used together with relational operators. In this context, logical
operators are used between relational statements (the output of each being a 1 or 0), resulting in an
overall output of just a single 1 or 0, which illustrates whether the overall statement is true or false.

Using Relational and Logical Operators with Scalars

Let’s begin by going through some examples using relational operators.

>> x = 5.4

x =

 5.4000

>> y = 3.9

y =

 3.9000

>> x == y

ans =

 0 (0 means false in MATLAB)

>> x > y

ans =

 1 (1 means true in MATLAB)

>> x >= y

ans =

 1

>> x ~= y

ans =

 1

3

>> x > y/50

ans =

 1

When we compare two pieces of alphanumeric data, MATLAB returns 0 (false) or 1 (true). Often we
want to do some action if two or more conditions are met. For example, if you have done your
homework and it is earlier than midnight, you will eat a snack before bed. This will require the use of
logical operators. Logical operators, as you can infer from the name, are used on logical variables (e.g.,

variables that have a value of either 0 or 1 and are of the logical type). Here are the rules for using
logical operators:

True and True  True

True and False  False

False and True  False

False and False  False

1 & 1  1

1 & 0  0

0 & 1  0

0 & 0  0

(are both statements true? true!)
(are both statements true? false!)

True or True  True

True or False  True

False or True  True

False or False  False

1 | 1  1

1 | 0  1

0 | 1  1

0 | 0  0

(is either statement true? true!)
(is either statement true? true!)

not True  False

not False  True

~1  0

~0  1

(the opposite of true? false!)

exclusive True or True  False

exclusive True or False  True

exclusive False or True  True

exclusive False or False  False

xor(1,1)  0

xor(1,0)  1

xor(0,1)  1

xor(0,0)  0

(is only 1 statement true? false!)
(is only 1 statement true? true!)

Next, let’s go through some examples using logical operators together with relational operators:

>> 7 == 7 & 6 > 7 (true and false  false)

ans =

 0

>> 7 == 7 & 6 < 7 (true and true  true)

ans =

 1

4

>> 7 == 7 | 6 > 7 (true or false  true)

ans =

 1

>> 7 == 9 | 10 > 11 (false or false  false)

ans =

 0

>> ~(7 == 9) (not (false)  true)

ans =

 1

>> ~(7 == 7) (not (true)  false)

ans =

 0

Note that the way we write a sequence of relational operators may be different than what you are
used to from mathematics. For example, when using relational operators “on paper” it is okay to write
something along the lines of (1 < x < 5) to indicate that x is strictly greater than 1 and strictly
less than 5. However, this syntax is not allowed in MATLAB. To write the same statement in MATLAB, it
would have the form (1 < x & x < 5). In other words, we must use only one relational operator
at a time, and link several of them together using logical operators.

One other important point about using the relational operator for equality (==) involves
numerical/rounding errors. The short answer is that you should never ask for equality between two
variables unless they are integers, character strings, or logical variables. Not only will this be important
in MAE10 homework problems, but it is inherent to all computational programming. Please see the
document on numerical and rounding errors for more details and additional explanation.

Here are some additional examples using variables. It is a good idea to use parentheses to avoid
confusion, group terms, and to control the order of execution.

5

>> x = 100; y = 8.1;

>> (x > y) | (x == 0)

ans =

 1

>> ((y*3)<(x*4)) & (x>5)

ans =

 1

Using Relational Operators with Numerical Arrays

You can also compare entire arrays of data using the same relational operators. For example:

>> quiz1 = [99,88,77];

>> quiz2 = [90,90,89];

>> quiz1 < quiz2

ans =

 0 1 1

Note that in order to compare two arrays, they must be the same size. An array of true/false values (1s
and 0s) is returned, which is the same size as the two arrays compared. Thus, you can see that using
relational operators between two arrays does not determine if the two arrays are equal, it determines
where the two arrays are equal – it compares every element of one array to every element of the
other array. The true/false values that result can be stored in a logical array. A logical array is an array
that contains only true/false values. It is a different class of variable (logical) and consumes less
computer memory than floating point numbers or character strings because each element only has
two possible values (1 or 0).

>> a = quiz1 < quiz2

a =

 0 1 1

>> whos

 Name Size Bytes Class Attributes

 a 1x3 3 logical

6

You can also compare all individual elements in an array to a single value (a scalar). The output will
automatically be a logical array of the same size as the input array.

>> quiz1 > 79

ans =

 1 1 0

Using Relational Operators with Character Arrays

Although it is uncommon, relational operators can also be used to compare character data. In general,
comparison between character arrays is handled by the switch function in MATLAB, which will be
covered later. The only relational operator that should be used with character data is the double
equals (==) to ask for equality. The important point to remember when asking for equality between
character data is that MATLAB is case sensitive in this regard. The following example illustrates this
point:

>> 'a' == 'a'

ans =

 1

>> 'a' == 'A'

ans =

 0

>> 'name' == 'name'

ans =

 1 1 1 1

>> 'name' == 'namE'

ans =

 1 1 1 0

Finally, notice that when we compare character arrays using a relational operator, the output is an
array of the same size. Comparing character arrays follows the same rules as comparing numerical
arrays as discussed previously.

