
1

Contents

READING DATA FROM TEXT FILES... 1

The fscanf() Command ... 1

READING DATA FROM TEXT FILES

We have already learned the input() command, which allows us to prompt the user for data entry

and store any entered value(s) in a variable. The user can easily enter a single number or character

string, but cannot easily enter many values simultaneously. Furthermore, the input() command

does not allow you to read in data from an external file – it only takes input from the command

window. There are many commands in MATLAB that can be used to read in data from external files,

and the best choice will depend on the type and format of the file. For example, the command

csvread() is useful if you need to read numeric data from a comma-separated value (CSV) file, and

the xlsread() command can easily import data from Microsoft Excel spreadsheets. While these

commands are useful for specific applications, in MAE10 we will focus on the fscanf() command.

The fscanf() Command

The fscanf() command is more generally applicable and can be used to read in many different

types of data from any ASCII text file. The general form of fscanf() is as follows:

array = fscanf(fileID,‘format specifiers’,[cols,rows])

 Where array is any valid variable name. This variable will store all data that is read in from the

file specified by fileID.

 Where fileID is the file identifier variable that is created when a file is opened using

fopen().

o Remember that you must open a file with read permission using fopen() (and create

a fileID) before you can use fscanf() to read in data from the file.

 Where the format specifiers are the same ones you have already learned for

fprintf(). Note that you must provide format specifiers to tell MATLAB the format of the

data in the file. These format specifiers do not determine how MATLAB will display the data in

the command window when it is read in. The format specifiers only describe the data that

already exists in the file so that MATLAB reads it in appropriately. When fscanf() reads a

file, it attempts to match the data in the file to the formats that you specify.

2

o If all of the data in the file is in the same format (e.g., all numbers in decimal notation),

you typically only need to provide one format specifier – just a %f would do in this case.

Note that you typically do not need to provide a field width or precision either; again we

just need to tell MATLAB what type of data it needs to look for in the file.

 Where [cols,rows] specifies the size of the data in the text file. Note that this notation is

the reverse of how we typically index arrays in MATLAB. That is, you must specify first how

many columns of data are in the text file, followed by how many rows of data are in the text

file.

o You should always specify the number of columns exactly (by looking in the file) to

ensure that the data is read in correctly. If the number or columns you give in the

fscanf() command does not match the number of columns in the data file, the data

will be read in incorrectly and you may miss some data.

o When specifying the number of rows, you have several options.

 You can specify less than the number of rows of data that exist in the file. This

means that MATLAB will not read in all the data in the file – you can read in as

many or as few lines (rows) as you like. This is particularly useful if you have a

large data file and would like to test your code by reading in only the first few

rows.

 You can specify exactly the number of rows in the data file. This typically means

opening the file and counting the number of rows of data. However, if you know

you want to read in all rows of data, the next option may be easier.

 You can specify inf – inf is a keyword in fscanf() that tells MATLAB to read

to the end of the file, regardless of how many rows of data are present.

 Note: Do not use inf outside of fscanf() – it cannot be used to index

arrays (and is different than end).

 You cannot use inf for the number of columns of data, only for the

number of rows.

o The size argument is optional although it is almost always included to ensure that the

data in the file is read in appropriately.

Now that we know what each of the arguments in the fscanf() command does, let’s look at an

example where we read in some numeric data from a file called my_data.txt (which contains a mix

of integers and decimals). We need to make sure that my_data.txt is in the same directory as

myfile.m so that MATLAB can find it (the M-File and data file must be in the same folder on your

computer). In this first example, we are going to read in only the first row of data from the file. This is

achieved by placing a 1 in the rows spot of the 3rd argument in the fscanf() command.

3

In my_data.txt:

 1 1 1.9 1.67 1 1.4

 1 2 1.3 2.71 2 1.8

 1 2 2.4 1.36 2 1.7

 2 3 2.0 2.16 3 2.1

 5 5 4.7 2.72 3 1.5

 6 6 5.9 2.56 4 1.1

 3 3 2.1 2.25 3 1.7

 5 4 6.6 6.60 6 1.3

 1 3 5.8 6.89 4 8.4

 8 10 6.3 4.25 2 7.1

In myfile.m:

myfile = fopen('my_data.txt',’r’);

mydata = fscanf(myfile,'%f',[6,1])

fclose(myfile);

Sample Output:

mydata =

 1.0000

 1.0000

 1.9000

 1.6700

 1.0000

 1.4000

Right away you notice that we read in one row of data from the file, but it was saved as one column in

the array mydata in MATLAB. This is because fscanf() fills the array in column order. Similar to

how fprintf() prints in column order, fscanf() reads in data (across the rows in the file) and

fills the array in column order. Therefore, what appears as a row in the data file will be saved as a

column in the array inside MATLAB.

Let’s expand the amount of data we read to be 4 rows and see how the mydata array looks in

MATLAB.

In myfile.m:

myfile = fopen('my_data.txt',’r’);

mydata = fscanf(myfile,'%f',[6,4])

fclose(myfile);

4

Sample Output:

mydata =

 1.0000 1.0000 1.0000 2.0000

 1.0000 2.0000 2.0000 3.0000

 1.9000 1.3000 2.4000 2.0000

 1.6700 2.7100 1.3600 2.1600

 1.0000 2.0000 2.0000 3.0000

 1.4000 1.8000 1.7000 2.1000

Again we can see that fscanf() read in a row of data and saved it as a column in the mydata array.

The first row of data from the file becomes the first column in the mydata array, and so on. If you look

carefully at the size we provided in fscanf(), you should see that this is in fact the size of the

mydata array in the traditional row and column notation. However, do not forget the rules for using

fscanf() – the size you specify in the fscanf() command should correspond to the size of the

data in the file in [col,row] notation (which just happens to be the size of the array in MATLAB in

row and column notation since fscanf() fills in array in column order). If you recall the

transpose() command, you should remember that it operates by switching the rows of columns of

an array. Therefore, if we want to manipulate our array in MATLAB to be back in the original shape of

the data in the file, we simply need to transpose the array after using fscanf().

Again working with the same data file, we will now use fscanf() to read in all the data in the file

with the inf keyword, and we will transpose the array so that the data in the array in MATLAB is in

the same size/shape as it was in the file.

In myfile.m:

myfile = fopen('my_data.txt',’r’);

mydata = fscanf(myfile,'%f',[6,inf]);

mydata = transpose(mydata)

fclose(myfile);

Sample Output:

mydata =

 1.0000 1.0000 1.9000 1.6700 1.0000 1.4000

 1.0000 2.0000 1.3000 2.7100 2.0000 1.8000

 1.0000 2.0000 2.4000 1.3600 2.0000 1.7000

 2.0000 3.0000 2.0000 2.1600 3.0000 2.1000

 5.0000 5.0000 4.7000 2.7200 3.0000 1.5000

5

 6.0000 6.0000 5.9000 2.5600 4.0000 1.1000

 3.0000 3.0000 2.1000 2.2500 3.0000 1.7000

 5.0000 4.0000 6.6000 6.6000 6.0000 1.3000

 1.0000 3.0000 5.8000 6.8900 4.0000 8.4000

 8.0000 10.0000 6.3000 4.2500 2.0000 7.1000

Success! We read in all the data from my_data.txt and used the transpose() command to ‘flip’

the mydata array back into the same dimensions as the data in the file. While it is never required that

you transpose your arrays after using fscanf(), it often helpful when you need to index the array in

MATLAB and manipulate the data. If you use fscanf() but do not transpose the array afterwards,

you will need to be very careful indexing the array because it will not be in the same shape as the data

in the file (the rows and columns will be switched compared to what you see in the file!). HINT: During

an exam, is it particularly useful to transpose your array after using fscanf() so that you can index it

based on the size/shape of the data printed on the page.

Finally, let’s look at a detailed example where we create a text file using fprintf(), then read the

data back into MATLAB using fscanf().

Note: When given detailed example problems such as the one below, it is suggested that you copy the

code into MATLAB and run it for yourself. In addition to understanding exactly what each line of code is

doing as is, you should modify the code in different ways to see how the output changes.

In myfile.m:

%% First, create the text file using fprintf()

time = [0, 3, 6, 9, 12, 15];

temp = [55.3, 54.1, 54.0, 56.7, 62.9, 63.1];

RH = [67, 76, 77, 80, 90, 93];

array = [time ; temp ; RH]; % combine for printing with fprintf()

file1 = fopen('temp_RH.txt' , ‘w’); % open with write permission

fprintf(file1,'%3i \t %5.1f %5.1f \n', array); % print data to file

fclose(file1); % close the file

%% Next, read in the data from the file using fscanf()

file2 = fopen('temp_RH.txt'); % omitted permission - ‘r’ is default

% The following will read all the data until the end of the file

% [3,6] would do the same thing as [3,inf] in this case.

A = fscanf(file2,'%f',[3,inf]); % '%f' works for decimal and integers

fclose(file2); % don't forget to close the file

disp(A) % Notice that the data is transposed when stored in A.

6

% This format is perfect for fprintf since it prints column by column

fprintf('%3i %7.2f %7.2f \n', A)

%% Finally, use the data to perform calculations/analysis

% Once read in, we can easily manipulate the data in A

fprintf('The mean temperature is %5.1f \n', mean(A(2,:)))

fprintf('The mean RH is %5.1f \n', mean(A(3,:)))

In temp_RH.txt:

 0 55.3 67.0

 3 54.1 76.0

 6 54.0 77.0

 9 56.7 80.0

 12 62.9 90.0

 15 63.1 93.0

Sample Output:

 0 3.0000 6.0000 9.0000 12.0000 15.0000

 55.3000 54.1000 54.0000 56.7000 62.9000 63.1000

 67.0000 76.0000 77.0000 80.0000 90.0000 93.0000

 0 55.30 67.00

 3 54.10 76.00

 6 54.00 77.00

 9 56.70 80.00

 12 62.90 90.00

 15 63.10 93.00

The mean temperature is 57.7

The mean RH is 80.5

As usual, we will conclude with a summary of key points to remember when using fscanf():

 You must open the file with read permission and create a file identifier using fopen() before

attempting to read in data from a file using fscanf().

o Remember to use read permission! If you accidently put a ‘w’ for write permission, the

file will be erased irreversibly and all data will be lost.

 You must close the file using fclose() after you have finished reading in the data using

fscanf().

 fscanf() is designed to read in data only from text files. However, it does not need to have a

.txt extension, it just needs to be a plain ASCII text file (e.g., you can view it in MATLAB’s

7

built-in text editor, Notepad++, or any other text editor program). Text files without an

extension or with other extensions like .dat can also be read using fscanf().

 When using fscanf(), remember to have a variable to the left hand side of the equals sign.

This variable will be the array that stores all of the data that is read in from the file inside of

MATLAB.

 When specifying the size of the data in the fscanf() command, you must specify the size of

the data that exists in the file in [col,row] notation. The number of columns should be

specified exactly based on how many columns are in the data file. The number of rows does not

need to match what is in the data file – specifying less than the number of rows in the data file

will read in only that many rows of data; specifying the number of rows exactly or using the

inf keyword for the number of rows will read in all the data in the file.

o Note that fscanf() fills the array in column order, such that the array that stores the

data in MATLAB will be transposed compared to the size/shape of the data in the file.

 Although it is not required, transposing the array in MATLAB after reading in the

data using fscanf() can be useful since it puts the data back in the same

size/shape that it appears in the file.

 The format specifier(s) used in fscanf() describe the format of the data in the file.

o MATLAB may display the data differently in the command window once it is stored in

the array.

 The data file that you want to open and read from must be in the same working directory

(current folder) as your M-File in order for MATLAB to find it and access it.

