
1

Contents

FORMATTED OUTPUT ... 1

Writing Data to a File: The fopen() and fclose() Commands .. 9

FORMATTED OUTPUT

In the past, we used the disp() command to display outputs in the command window. However,

there are many limitations to the disp() command: we have limited control over formatting, it

cannot output/write to a file, and it becomes quite lengthy and clumsy to output a mix of character

and numerical data. Thankfully, there is a more sophisticated way to output data. This is done using

the fprintf() command. The general form of fprintf() is as follows:

fprintf(fileID,‘string with format specifiers’,variable1,variable2,…)

Note that the form of fprintf() is much different than that of disp() – do not confuse the two

as they are two completely separate commands. The syntax rules that apply to fprint() do not

apply to disp() and vice versa. Let’s break down the different arguments in fprintf():

 The fileID is a variable that serves as a file identifier; it is a MATLAB variable that identifies

(and directs output to) a file external to MATLAB. The file identifier is obtained from the

fopen() command (discussed later in this document). It does not need to be named

“fileID” – you can use any valid variable name for a file identifier in MATLAB. The file

identifier is how you refer to an external file that has been opened in MATLAB using the

fopen() command – when you send output to a specific fileID using fprintf(),

MATLAB directs this output into the exact file you provided when using fopen().

o The fileID is an optional argument. If you do not include any fileID, the output of

fprintf() will be sent to the command window by default.

 The second argument of fprintf() is a string (i.e., it is surrounded by single quotes) that

contains characters/words that you want to output, as well as format specifiers. Format

specifiers, described below, essentially serve as a placeholder for data that you want to output.

The data that you want to output is stored in variables, which are listed as the 3rd argument(s)

of fprintf().

o When using fprintf(), the variables’ values are inserted into the string wherever

you place a format specifier.

o This differs from the disp() command, which simply prints from left to right in order.

2

 The third argument(s) of fprintf() are the list of variable(s) that you want to output. The

variables will be printed in the order that you list them, with their value(s) being inserted into

the string wherever you place a format specifier.

o The variables that you print can be of any data type, just be sure to use the appropriate

format specifier depending on the type of data you are outputting.

o You can include any number of variables when using fprintf(), including none. If

you include no variables, you can print a character string directly as you did with the

disp() command. This is uncommon and typically one or more variables are included

in any fprintf() statement.

While there are countless format specifiers (conversion characters) available in MATLAB, we will focus

on only a handful of them in MAE10. Here are the most important ones to remember and the data

type they are used for:

%f fixed-point (decimal) notation

%e scientific (exponential) notation

%g the more compact of %f or %e with no trailing zeros

%i integer

%c single character

%s string of characters (character vector or string array)

When using a format specifier, you always start with the percent sign (%), followed by other

arguments as shown here:

In most cases, you only need the percent sign, followed by the field width, a period, and the precision,

then the conversion character (which specifies the data type). Many of these arguments are optional

and are used only in special circumstances. For MAE10, you must know how to use flags, field width,

precision, and conversion characters (including the default behavior if arguments are omitted and how

to provide any requested format by including certain arguments). Because there are many rules,

conversion characters, flags, etc., to remember for fprintf(), it is a good idea to keep the most

important information on your note sheet for reference during the exams.

3

Here is a description of the main arguments we will use in MAE10:

 The percent sign is always included and marks the location of where the value you are printing

will be inserted into the string.

 Flags are optional. They can be used to exercise more control over the output. For example,

they allow you to left justify, print a sign character (+ or -), pad values with zeros, etc.

 The field width is optional but almost always included. It determines how many spaces are

reserved for the entire value to be printed. Note that every single character takes up one space;

this includes periods, + or - signs, letters, numbers, etc.

o If you specify a field width that is larger than necessary, extra blank spaces will be

printed in your output. By default, the extra blank spaces go in front (to the left of) the

value being printed (the values are right-aligned).

o If you specify a field width that is smaller than the field width required to print the

value, MATLAB will automatically increase the field width as necessary to fit the value.

That is, the field width is the minimum number of spaces that output will take.

 The precision is optional but typically included for numerical data. It determines the number of

digits to the right of the decimal when printing numerical data with %f or %e.

o When using %g, the precision determines the total number of significant digits, which

includes numbers to the left of the decimal.

o You do not include a precision when printing character data.

 The conversion character is required. It essentially tells MATLAB what type of data will be

output (integers, decimals, characters, etc.) and what format you want the data to be printed

in. Be sure to use a conversion character appropriate for the data stored in the variable(s) you

are outputting.

The best way to understand the behavior of fprintf() is to practice using different arguments,

format specifiers, and flags to output various types of data stored in different variables. Having a few

examples on your note sheet can also be helpful, but don’t overdo it. Let’s start with a simple example

and build up from there.

In myfile.m:

midterm1 = 84.5;

midterm2 = 95.1;

fprintf('Score#1 = %f',midterm1)

fprintf('Score#2 = %f',midterm2)

Sample Output:

Score#1 = 84.500000Score#2 = 95.100000

4

This may not be the output you expected – the output from both separate fprintf() commands

appeared on the same line! Unlike the disp() command, separate fprintf() commands do not

automatically start each output on a new line. To tell fprintf() to insert a new line, we must

include the special operator \n. A \n can be placed anywhere inside of the string in an fprintf()

command, and a new line (also called a carriage return) will be inserted at that location. In most cases,

you will want to include a \n at the end of your fprintf() so that the next fprintf() will print

on a new line, rather than continue immediately following the previous output along the same line.

However, be aware that a \n can be used anywhere inside the string, and more than one \n can be

used in the same fprintf() if desired. There are also other special operators you can include in

fprintf(), such as \t for a horizontal tab. Using tabs to separate data when printing to a file is

particularly useful as several programs (such as Microsoft Excel and even MATLAB) can easily import

tab-delimited data into separate columns.

The other thing you should notice from the above example is that the values output were shown with a

precision of six. That is, there are six numbers after the decimal point. This is the default for %f (and

%e); if you do not specify a precision, it will default to six. MATLAB automatically adds trailing zeros to

give the requested precision if the value being printed does not already include the requested number

of digits after the decimal.

Let’s modify the previous example by doing two things: adding a \n and including a precision for

printing out our values (instead of using the default for %f).

In myfile.m:

midterm1 = 84.5;

midterm2 = 95.1;

fprintf('Score#1 = %.1f\n',midterm1)

fprintf('Score#2 = %.2f\n',midterm2)

Sample Output:

Score#1 = 84.5

Score#2 = 95.10

This time, we used a precision of 1 for the first score and a precision of 2 for the second score. We also

included the \n operator to ensure that a new line is inserted at the end of each fprintf(). Notice

that we still did not include a field width – it is okay to include a precision without a field width. If you

do so, MATLAB will automatically determine how many spaces are required to fit the number (and you

will not end up with any extra blank spaces).

5

Let’s continue with the same example but now we are going to include a field width, combine our two

midterm scores into a single array, and use just one fprintf() command for output.

In myfile.m:

midterm = [84.5 95.1];

fprintf('Score =%8.2f\n',midterm)

Sample Output:

Score = 84.50

Score = 95.10

In this example, we made a few changes. Here we print out the 1x2 midterm array using just one

fprintf() command. This brings up an important point about fprintf() – if you do not include

enough format specifiers to print all the values stores in the variable(s) (e.g., two values in the midterm

array but only one format specifier), the entire fprintf() statement will be restarted until all values

stored in the variable(s) are printed. This is typically referred to as “recycling” format specifiers. Thus,

on the first pass through the fprintf(), midterm(1) is printed. Because the end of the

fprintf() is reached but there is another value in the variable midterm, the fprintf() is

restarted, and midterm(2) is printed. Both values are printed using a precision of 2 and field width

of 8 as determined by the format specifier. The value takes a total of 5 spaces to be printed (4 for the

numbers, 1 for the period), so 3 extra spaces are left over out of the 8 we reserved. These blank

spaces are placed in front of the number by default, and the number is aligned to the right. This means

there are 3 blank spaces total between the equals sign and the value.

When we are printing more than one array using fprintf(), all values in the first array are printed

before moving to the next array. The following example illustrates this point:

In myfile.m:

x = 1:5;

y = x.^2;

fprintf('%i \t %i \n',x,y)

Sample Output:

1 2

3 4

5 1

4 9

16 25

6

This is probably not the desired output – all of the values in x were printed before the values in y. If we

want to print the values in a two column table, we need to combine the x and y vectors into a larger

2D matrix. However, we need to be careful because fprintf() prints down the columns of arrays

when they are 2D. Let’s look at an example to illustrate:

In myfile.m:

x = 1:5;

y = x.^2;

z = [x;y]

fprintf('%i \t %i \n',z)

Sample Output:

z =

 1 2 3 4 5

 1 4 9 16 25

1 1

2 4

3 9

4 16

5 25

Here we printed the values in z (in column order), with each pair of values separated by a tab. The

creation of the z array was left unsuppressed so that you can see how the values are arranged in the z

array compared with how fprintf() prints these values.

Let’s look at one more example with a 3x3 matrix to ensure we understand how fprintf()

operates on 2D arrays:

In myfile.m:

A = [1 2 3; 4 5 6; 7 8 9]

fprintf('%3i%3i%3i\n',A)

Sample Output:

A =

 1 2 3

 4 5 6

 7 8 9

7

 1 4 7

 2 5 8

 3 6 9

Here we printed the values in A using %i for integers, with a field width of 3. This means that 3 spaces

were reserved for each value. Since each value only takes up 1 of these spaces, we have 2 extra blank

spaces in front of each number. Additionally, noticed that we used what we learned from the previous

examples – we included only 3 format specifiers but have 9 values total to print. After the

fprintf() finishes the first pass, there are still values in A that need to be printed, so the entire

fprintf() is restarted until all values in A have been printed. Now look carefully at the order of the

output compared to the original A array. The fprintf() printed the values in column order, starting

at the top left and going down column one before moving to column two, and so on. If we wanted to

print out the A array in its original shape, we need to transpose it before using fprintf(). Using the

transpose() command on an array before printing its values using fprintf() is common.

Let’s revisit homework 1 problem 4 but use fprintf() for the output instead of disp(). In this

final example, we are going to put together everything that we have learned so far:

In myfile.m:

x = [0:0.1*pi:pi];

tablearray = [x ; cos(x) ; sin(x)];

a = 'x'; b = 'cos(x)'; c = 'sin(x)';

fprintf('%10s%10s%10s\n',a,b,c)

fprintf('%10.2f%10.2f%10.2f\n',tablearray)

Sample Output:

 x cos(x) sin(x)

 0.00 1.00 0.00

 0.31 0.95 0.31

 0.63 0.81 0.59

 0.94 0.59 0.81

 1.26 0.31 0.95

 1.57 0.00 1.00

 1.88 -0.31 0.95

 2.20 -0.59 0.81

 2.51 -0.81 0.59

 2.83 -0.95 0.31

 3.14 -1.00 0.00

8

Be sure that you understand exactly how the code in the M-File produces the sample output shown

above.

In the following example, we are going to print a mix of alphanumeric data using different format

specifiers with various field widths and precisions. A detailed breakdown and explanation of how each

fprintf() statement in the M-File produces the sample output is included below.

In myfile.m:

score(1) = 92.5;

score(2) = 81.0;

average = (score(1) + score(2)) / 2;

names = char('Paul' , 'Frank');

fprintf('The test scores were %8.3f and %1.1f\n', score(1), score(2))

fprintf('The test scores were %6.3f and %9.0f\n', score(1), score(2))

fprintf('The test scores were %9.1e and %9.4e\n', score(1), score(2))

fprintf('Hello %10s and %8s \n', names(1,:), names(2,:))

fprintf('%s received a score of %e \n', names(2,:), score(1))

Sample Output:

The test scores were 92.500 and 81.0

The test scores were 92.500 and 81

The test scores were 9.3e+01 and 8.1000e+01

Hello Paul and Frank

Frank received a score of 9.250000e+01

For the first fprintf():

 8 spaces total are allotted for score(1) and 3 of the spaces are allotted for numbers to the

right of the decimal. The decimal itself takes 1 space, so 4 spaces are left for numbers to the left

of the decimal. Since 92 takes up 2 spaces, there are 2 extra blank spaces left (placed in front of

the number).

 1 space is allotted for score(2) and 1 space is allotted for numbers to the right of the

decimal. The decimal also takes 1 space, so we can see right away the field width we provided

is not sufficiently large to fit the number. Thus, MATLAB increases the field width as necessary

to give the requested precision and fit the number. Since 81 take up 2 spaces, the number

takes up a total of 4 spaces. There are no extra blank spaces.

For the second fprintf():

 6 spaces are allotted for score(1), which is the perfect amount. 3 of the spaces are allotted

for numbers to the right of the decimal. The decimal takes 1 space and there are no extra blank

spaces.

9

 Notice that there is no decimal point for score(2). This is due to zero spaces being allotted

to numbers after the decimal (a precision of zero). In this case, there are 7 extra blank spaces.

For the third fprintf():

 We are now using the %e format specifier, so numbers will be printed in scientific notation. 9

spaces are allotted for score(1) with 1 of the spaces being allotted for numbers to the right

of the decimal. Notice that the ‘5’ is truncated (and the 2 is rounded up) – we requested a

precision of 1, which means that only one number after the decimal will be displayed. The

decimal point takes up 1 space and the e+01 takes up 4 spaces. Thus, there are 2 extra blank

spaces in front.

 With a %9.4e, our field width is not large enough to fit the number. 8.1000 takes up 6

spaces, and e+01 takes up another 4, meaning we need 10 spaces total. MATLAB automatically

adjusts our field width to 10 to give us a precision of 4, and no extra blank spaces result.

o Note that with scientific notation, there is always only one number to the left of the

decimal.

For the fourth fprintf():

 We are now using the %s format specifier, which is for printing strings of character data. With

the %10s we reserve a total of 10 spaces, but only 4 are required to print Paul, so we have 6

extra blank spaces in front.

o NOTE: One of the extra spaces is actually from a padded space in the names array (each

row has 5 elements).

 Similarly, Frank takes up only 5 of the 8 spaces reserved, so we have 3 extra blank spaces in

front.

For the fifth and final fprintf():

 We use a %e format with no field width or precision, so MATLAB uses the default precision of 6

and adjusts the field width to fit the number. This number takes a total of 12 spaces to be

printed.

Writing Data to a File: The fopen() and fclose() Commands

So far we have discussed a variety of ways to format and output data using fprintf(), but all

output so far has been directed into the command window. While this is useful for testing purposes

and to quickly look at small quantities of data, in practice we want to export our data into files external

to MATLAB. This is particularly true if we are generating large quantities of data; hundreds, thousands,

or even millions of lines of data are not uncommon in engineering computations. We would not want

to output this quantity of data into the command window, so we write it to a file outside of MATLAB

instead. Once we write the data to an external file, we can easily share it with others, keep a copy for

backup, and use various other programs (or perhaps even MATLAB) to further process and analyze the

10

data. The good news is that everything you have learned so far about fprintf() applies exactly the

same when we are printing data into a file. The only difference is that we now include the file

identifier, the optional first argument of fprintf(), that we omitted in all the previous examples.

When we include the file identifier, output is directed to that file rather than to the command window.

To get a file identifier, we need to first open the file using the fopen() command. The general form

of the fopen() command is the following:

fileID = fopen(‘filename’,‘permission’)

 Where fileID is the variable that serves as a file identifier – it can be any valid variable name

and does not need to be called “fileID”. After using fopen(), the fileID is how you refer

to the file in MATLAB (not by its filename and extension that appears in your computers file

browser).

 The ‘filename’ is the exact name of the file that you want to open. This is the filename

exactly as it appears in your computer’s file browser with the file extension. The filename is case

sensitive and the extension must be included. It should exactly match the file on your

computer.

o Always place the full filename and extension in single quotes.

 The permission is exactly that – it determines what permissions you are granting MATLAB with

the file you are opening. The main two permissions you need to know for MAE10 are:

o ‘r’ for read only permission – this means that you plan to read in data from the file

(using fscanf() for example). You would not use a ‘r’ permission if you are going to

be writing data into the file using fprintf().

 If you do not include a permission at all, (e.g., you omit the permission argument

and just include the filename in fopen()), the default permission is read only.

o ‘w’ for write permission – this means that you plan to write data into the file (using

fprintf() for example).

 Be careful using ‘w’ permission! If you include the ‘w’ permission the file will

be created if it does not exist and it will be immediately erased if it already exist.

o The letter(s) for the permission are always placed in single quotes.

There are other arguments that can be included in fopen(), but this is essentially all you need to

know for MAE10.

Let’s repeat the example we already covered with the 3x3 array A, but this time we are going to print

the output into a file called ‘matrix.txt’ instead of to the command window.

11

In myfile.m:

A = [1 2 3; 4 5 6; 7 8 9];

myfile = fopen('matrix.txt',’w’);

fprintf(myfile,'%3i%3i%3i\n',A);

fclose(myfile);

Inside matrix.txt:

 1 4 7

 2 5 8

 3 6 9

In this example, we have no output in the command window; the A matrix is suppressed (as are the

fopen() and fclose() commands) and the fprintf() output is directed into the file

matrix.txt via the file identifier myfile. Once again all of the rules for fprintf() that you

have learned previous apply exactly the same whether you are printing into a file or to the command

window.

Here is a summary of the key points to remember when using fprintf():

 Recall which arguments are optional and which are required as summarized above.

o For MAE10, you must know how to use flags, field width, precision, and conversion

characters.

o The most commonly used form of a format specifier in fprintf() will be: %+X.Yf

 Where + can be replaced with any valid flag.

 Where X is the minimum number of spaces reserved for the variable’s value.

 Where Y is the number of digits to display to the right of the decimal.

 Note that X and Y are separated by a period.

 Where f can be replaced with any valid conversion character.

 Note that with some conversion characters (e.g., strings and integers), a

precision Y is never included.

 Know what the default behavior is when using each type of conversion character.

o For example, the default precision when using %f or %e is 6.

 If you specify a field width that is too small (not enough spaces total) to fit the value being

printed with the requested precision, MATLAB will increase the field width to provide the

requested precision (and no extra blank spaces will result).

o In order words, the field with is the minimum number of spaces reserved for printing

the value.

12

 If you specify a field width that is larger than necessary, any extra blank spaces will be placed in

front of the value by default (the value is aligned to the right).

o Optionally, you can include a flag to left-align values.

o You will only end up with extra blank spaces if you reserve a field width that is larger

than necessary.

 Remember that any character takes 1 space of the field width. This includes numbers, signs,

letters, periods, commas, etc.

 Remember that variables are printed in the order they are listed (from left to right), and their

values are inserted into the fprintf() string wherever a percent sign and conversion

character are included.

o When printing arrays, all values in a given array are printed before moving onto the next

array in the variable list.

 When printing 2D or larger arrays using fprintf(), values are printed in column order. That

is, starting in the left-most column, all values in a given column are printed (from the top down)

before moving to the next column to the right.

 If you do not include enough format specifiers (i.e., more values in the variable list than format

specifiers in the string), the entire fprintf() statement will be restarted until all values are

printed.

 If you include more format specifiers than necessary (i.e., more format specifier than values in

the variable list), the fprintf() will be terminated early (after the last value is printed).

 When the fileID argument is omitted, fprintf() will output to the screen.

o If a fileID is included, the output of the fprintf() will be directed to the external

file with that fileID. Be sure that you have used fopen() to open a file and create

the fileID variable before using fprintf() to print to the file (and use fclose()

to close the file after you are finished printing data into it).

 We never need brackets when using fprintf() like we did with disp(). Additionally,

num2str() is never necessary with fprintf() because we simply provide the appropriate

format specifier when we are printing numerical or character data.

