
1

Contents

ANONYMOUS FUNCTIONS .. 1

Using Anonymous Functions with Arrays ... 4

ANONYMOUS FUNCTIONS

Anonymous functions are a simple and concise way to define a function that contains only a single

executable statement, such as a polynomial expression or any basic formula that can be defined in one

line of code. Anonymous functions are stored as a type of variable (function_handle) and thus do

not need any special construct nor do they need to be defined in their own M-File (as we learned

previously with user-defined functions). Because anonymous functions are defined as a type of

variable, they will show up in the workspace and follow the same rules are other variables. Perhaps

more importantly, they will be erased with the clear command, and are defined only locally in the

workspace. Anonymous functions are created using only a single line of code and can be defined

anywhere inside of an M-File, even if the M-File is a function file. They accept input arguments and

return outputs similar to how built-in functions do.

Anonymous functions are most useful if you have a formula or calculation that needs to be carried out

many times throughout your code with various different values for input arguments. By defining an

anonymous function, you avoid any potential errors that could result from re-typing or copy/pasting

the formula. If you use an anonymous function, you would only need to type the formula once when

the anonymous function is created, and the formula would be stored in the function_handle for

later use. Calling the function is concise and easy, and the output of the function can be saved to a new

variable if desired.

First, let’s look at the syntax used to create anonymous functions:

name_of_func = @(inputs,listed,here) formula/expression/calculation

 When creating an anonymous functions, you always start with the name of the function to the

left of the equals sign. Remember that an anonymous function will be defined as a variable, so

be sure to follow the rules for valid variable names, do not use any keywords or built-in

function names, and chose a name that is intuitive for what the function does. Here the

variable name_of_func will be created as a function_handle in the workspace.

 After the equals sign, you use the “at symbol”, @, immediately followed by the input arguments

enclosed in parenthesis.

o An anonymous function can have any number of inputs, including none.

2

 Be careful! If your anonymous function has no inputs, you need to use empty

parenthesis “()” when you define and call the anonymous function.

 After listing the inputs enclosed in parenthesis, you provide the expression

(formula/calculations/command) that the function needs to perform. Be sure that any variables

used in the expression have already been defined and are stored in memory.

o You do not need to pass all variables used in the expression in as input arguments. For

example, if there are constants in your equation such as in y = a*x^2 + b*x + c

we only need to pass in x as an input argument if a, b, and c do not change. In this

case, the values of a, b, and c that already exist in memory when we define the

anonymous function will be stored in the function_handle, and when we call the

function, those values will be used with whatever value for x we send as an input

argument. See the example below to see how we can create an anonymous function

that solves this polynomial for y (the output) as a function of x (the input) with a, b,

and c as constants.

 You do not list any output variables when creating anonymous functions as you do with user-

defined functions. The output variable is defined when you call the anonymous function.

o In MAE10, we will only work with anonymous functions that have one output.

 Adding a semicolon to the end of an anonymous function definition will prevent MATLAB from

displaying the function_handle that you just created, but it will of course still be stored in

memory to be called/used later in the code.

Once we have created an anonymous function, we need to call the function in order for it to be

executed (just like when we use built-in or user-defined functions). The syntax we use to call the

function is as follows:

output_name = name_of_func(inputs,listed,here)

As was the case with user-defined functions, the names of the input variables listed when we define

the function do not need to match the names of the input variables on the call to the function (i.e.,

dummy variables).

Let’s look at a basic example that simply adds 2 to any variable we send as input.

In myfile.m:

y = 5;

add2 = @(x) x+2;

mynum = add2(y)

3

Sample Output:

y =

 5

add2 =

 function_handle with value:

 @(x)x+2

mynum =

 7

In this first example we left everything unsuppressed so we can see the creation of the

function_handle and subsequent calculations. However, in most cases, this is unnecessary output

so we can include the semicolon. Notice that when we call the function, we use the value from the

variable y even though inside the function the input is listed as x. Again this is not a problem, since x is

just a dummy variable (essentially a placeholder). As we learned with user-defined functions, it is the

values that are passed into the function and the names of the variables do not need to match. The

output of the function is saved to a variable called mynum, which is simply the value of the input plus

2.

Let’s now create an anonymous function to evaluate the polynomial expression we mentioned

previously:

In myfile.m:

a = 3;

b = 5;

c = 2;

f = @(x) a*x^2 + b*x + c;

y = f(5)

Sample Output:

y =

 102

4

Notice that we do not need to include a, b, and c as inputs. Since these variables are defined before

the anonymous function is created, their values are automatically stored in the function_handle

and used in the anonymous function when it is called. In other words, the function_handle stores

not only the expression, but also variables required to evaluate the expression that are not listed as

inputs (the constants a, b, and c in this example). Note that if you want to use different values for the

constants, you will need to create a new function_handle (and define new values for a, b, and c

beforehand). The value for x needed in the function is passed in when we call the function on the fifth

line. Using the value of 5 for x, the expression is evaluated and the resulting value is saved to the

variable y. Once the anonymous function is created and the function_handle is stored in

memory, we call it as many times as we like and evaluate the expression at different values of x. We

can also call anonymous functions from the command line or any other M-File once the

function_handle is stored in memory (i.e., they can be used outside of the original M-File they

are created in until you use clear to erase variables in memory or exit MATLAB).

Using Anonymous Functions with Arrays

In the previous examples we sent only scalars as input arguments, but we can send arrays as input in

the same way. However, we need to be careful when we create the anonymous function to ensure

that the operations included in the expression are valid for arrays as well as scalars. For example, we

should include the dot operator when doing multiplication of exponentiation to ensure that the

expression will work for both scalars and arrays. To illustrate this point, let’s do one more example

where we have more than one input argument, and at least one of the inputs is an array.

In myfile.m:

y0 = 0; % initial position [m]

v0 = 25; % initial vel [m/s]

g = -9.8; % vertical accel [m/s^2]

theta = 45; % angle [deg]

height = @(t,v0) y0 + v0*sin(theta*(pi/180))*t + 0.5*g*t.^2;

y = height(1,10)

time = 0:0.5:3;

y2 = height(time,v0)

Sample Output:

y =

 2.1711

5

y2 =

 0 7.6138 12.7777 15.4915 15.7553 13.5692 8.9330

In this example we created an anonymous function to calculate the height of a projectile at any given

time (if we send a scalar input) or at many different times (if we send an array as input). Note that we

had to include the dot operator in the exponentiation (t.^2) to ensure the function would work if we

send an array as input for the time. In this example we have two input arguments, t and v0, so that

we can easily calculate the height of the project at different times or with different initial velocities.

The constants theta and g are not inputs – they are stored in the function_handle. Notice that

we also used pi in the expression. Because pi is a built-in, globally defined variable, we can use it

anywhere in MATLAB, including anonymous functions.

Anonymous functions are a small but important topic as they can be easily integrated into your

MATLAB codes to perform key tasks or calculations. It is possible to use anonymous functions in even

more sophisticated ways, but this is beyond the scope of what is covered in MAE10. For additional

information and examples, please see the MathWorks help page on anonymous functions and/or

consult your textbook.

